

Damping Ring Design and ATF Report

Andy Wolski

Lawrence Berkeley National Laboratory

May 10th 2002

Overview

LBNL Staff for NLC Damping Ring Design

Alan Jackson (Lead)
Stefano de Santis, Andy Wolski (Accelerator Physics)
Kurt Kennedy (Vacuum)
Jin-Young Jung, Steve Marks (Magnets)
Mauro Pivi (Electron Cloud)

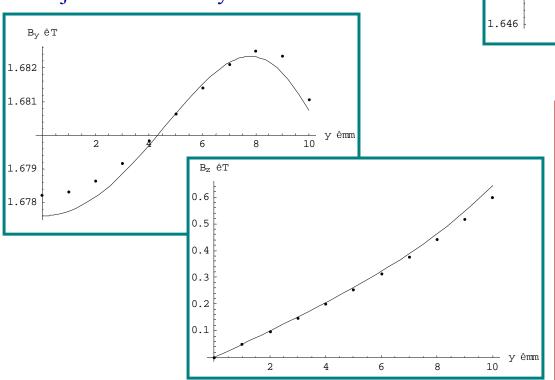
- Contents of Talk
 - TRC
 - program for Damping Rings
 - status and plans
 - impact on Damping Rings work
 - Recent Developments in NLC Damping Rings
 - estimates of collective effects in Main Damping Rings
 - Experimental program: ATF
 - Beam-Based Alignment
 - Damping Rings R&D program

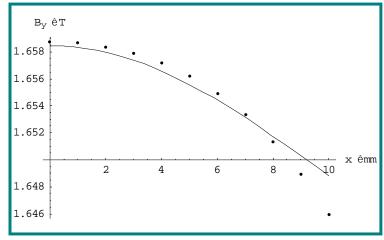
TRC

Group Members:

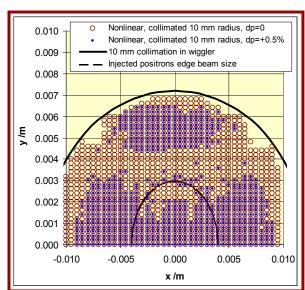
Joe Rogers (leader) Ralph Assmann Winfried Decking Jacques Gareyte Kiyoshi Kubo Andy Wolski

Tasks:


- Define wiggler models
- Define misalignment and magnet error models
- Define diagnostic and correction models
- Evaluate emittances with misalignments and tuning algorithms
- Evaluate effect of IBS on extracted emittances
- Evaluate effects of impedance, ions, electron cloud
- Evaluate effect of extraction kicker on emittances
- Evaluate particle loss
- Evaluate extracted beam stability (against jitter)
- Evaluate preservation of polarization

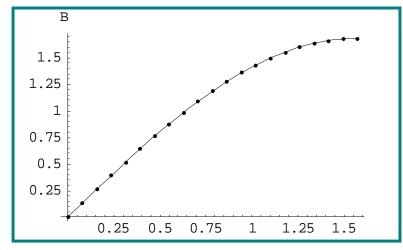


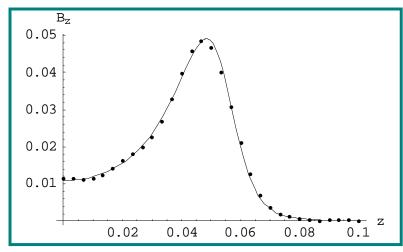
TRC Wiggler Models



- 3-D field fit for a single period
- Use expansion in symplectic integrator
 - some approximations needed
- Determine dynamic aperture
- Track with "actual" bunch to determine injection efficiency

Sample fits and DA for TESLA

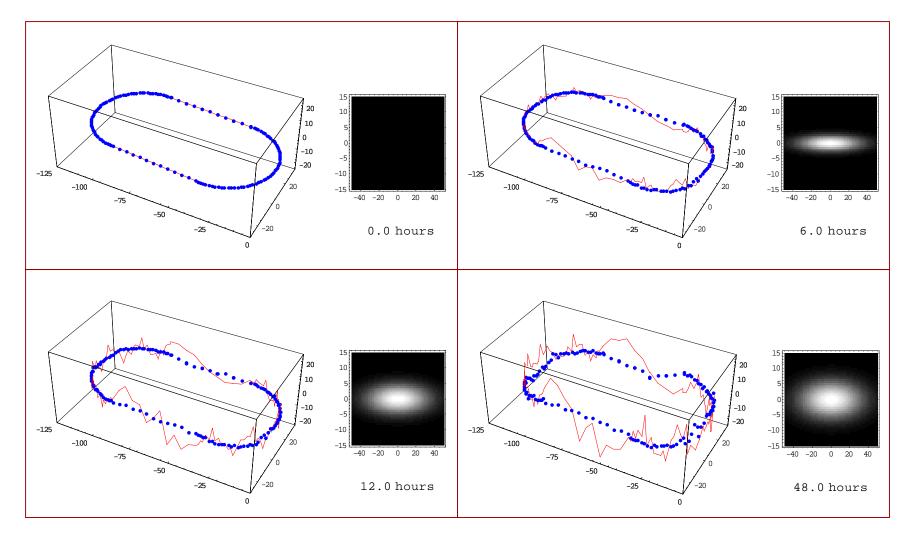




TRC Wiggler Models

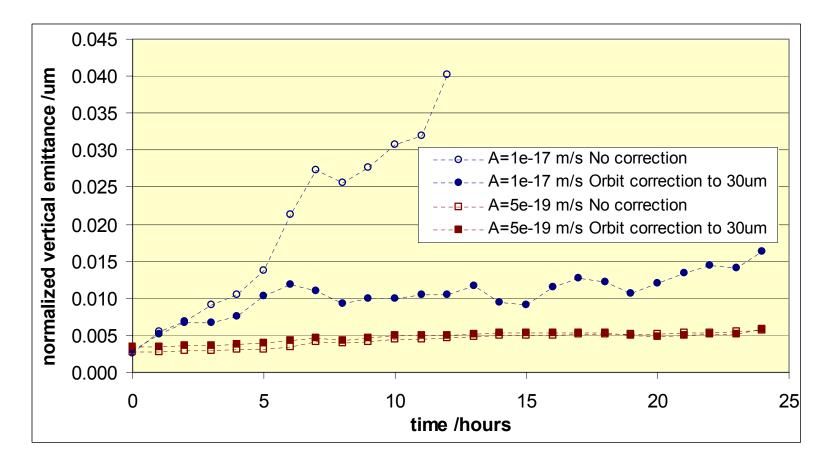
- TESLA DRs have >400 m of wiggler
 - provide 90% of energy loss
 - significant effect on the dynamics
- Improved fitting and modeling procedure is motivated
 - recently started working with Alex Dragt
 - already have much easier and more robust field fitting algorithm
 - exploring best approach for constructing a dynamical map through the wiggler
- Results will be very useful for NLC (and light sources...)

TRC Emittance Tuning Simulations



- Report will refer to ATF experience
- Cross-checked emittance tuning algorithms between MAD/MATLAB (DESY) and MERLIN (LBNL)
 - NLC and TESLA use algorithms based on orbit and dispersion correction
 - NLC algorithm performs satisfactorily with tight tolerances
 - $\sim 100 \ \mu m$ initial alignment on quadrupoles and sextupoles
 - $\sim 100 \mu rad roll errors on quadrupoles$
 - <1 mm rms vertical dispersion correction, requires 0.3 µm BPM resolution
 - correction achieved in 90% of cases
 - Further work needed on TESLA correction
 - chromaticity correction is local to the arcs (extreme for TESLA DR structure)
 - using sextupoles to correct dispersion globally introduces strong betatron coupling
- Developed 2D ATL model and implemented in simulations
 - allows consistent use of ground motion models across entire LC
 - study tuning performance in better approximation to reality
 - could be important for TESLA

TRC Emittance Tuning Simulations



TRC Emittance Tuning Simulations

TRC Collective Effects

- Studies in progress (see later slides)
- Impedance effects
 - TESLA and NLC will operate satisfactorily with specified impedance...
 - ...but specifications are very tight and great care will be needed in vacuum chamber design and construction
- Space-Charge
 - implications of TESLA coupling scheme still not fully explored by TRC
 - space-charge tune shift not entirely negligible in NLC MDR
 - simulations required
- Electron Cloud
 - a significant issue for NLC MDR and TESLA
- Fast Ion Instability
 - needs more study
- Intra-Beam Scattering
 - TESLA probably OK
 - an issue for NLC MDR, studies ongoing...

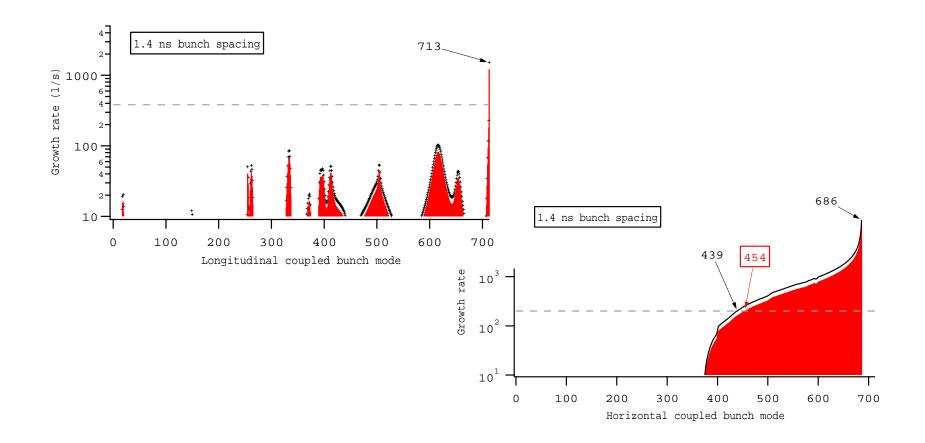
TRC Impact

- Closer collaboration between projects
 - discussion of common issues, e.g. emittance tuning, collective effects
 - cross-checking of codes and results
- Further development of existing models
 - wiggler work
- Consistency with other systems in LC
 - ground motion models
 - component performance specifications (BPM resolution...)
- Accelerated timescales
 - effects of kickers, jitter etc.


NLC Damping Rings Status

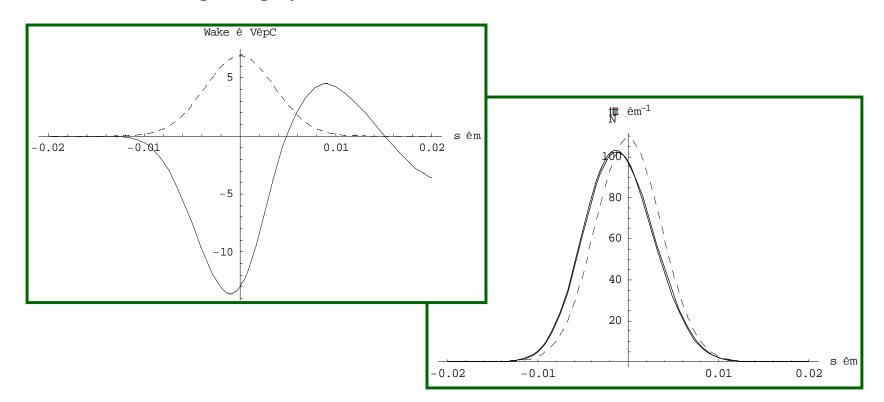
- Lattice designs are stable
 - Main Damping Rings, Pre-Damping Ring, Transport Lines
 - Meet acceptance and damping specifications
 - All main systems and components included in designs
- Algorithm developed for Low-Emittance Tuning
 - Alignment tolerances and BPM resolutions have been determined by analytical studies and simulations
- Systems and component designs
 - RF cavities
 - Main Damping Ring wiggler
 - Dipoles and quadrupoles for Main Damping Ring
 - Permanent Magnet and Electromagnet technologies have been considered
 - Vacuum chamber
- Engineering designs
 - Design work has shown practicality of Accelerator Physics design

NLC MDR Collective Effects


- Recent (and ongoing) focus of NLC DR studies
- Various effects need to be considered:
 - Long-Range Wake Fields
 - Short-Range Wake Fields
 - Touschek Scattering
 - Intra-Beam Scattering
 - Phase Transients from Beam Loading
 - Electron Cloud
 - single bunch
 - coupled bunch
 - Fast Ion Instability

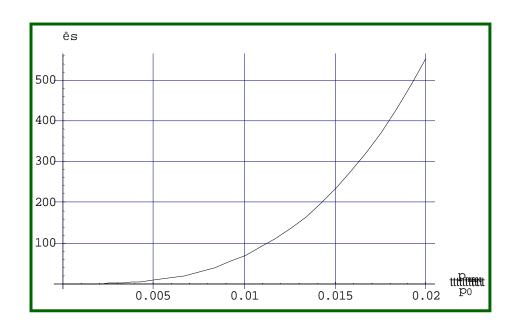
Long-Range Wake Fields

- Studies by Stefano de Santis
- Transverse dominated by resistive wall
- Feedback system with bandwidth ~ 350 MHz required



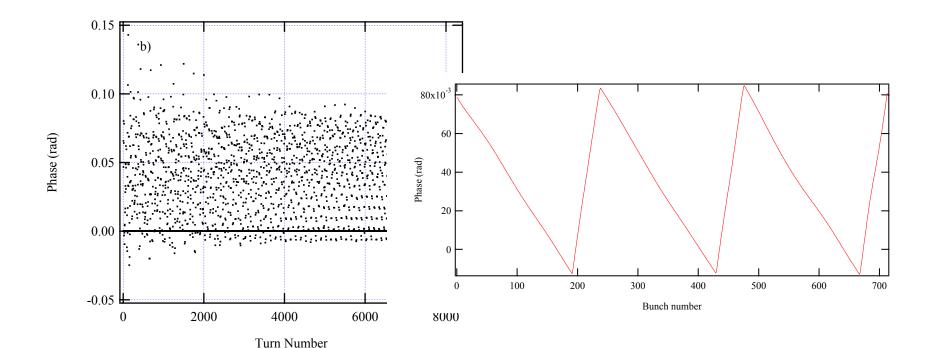
Short-Range Wake Fields

- Impedance model by Cho Ng (1999)
- Potential Well Distortion is a small effect (~ 5%)
- $Z/n = 25 \text{ m}\Omega$ (mostly resistive)
 - apply Boussard criterion to estimate microwave threshold
 - bunch charge roughly a factor of three below threshold



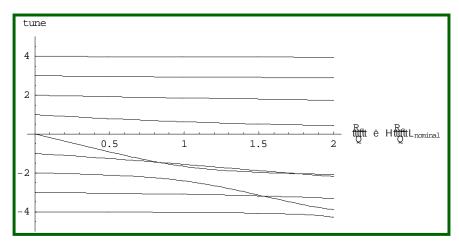
Touschek Lifetime

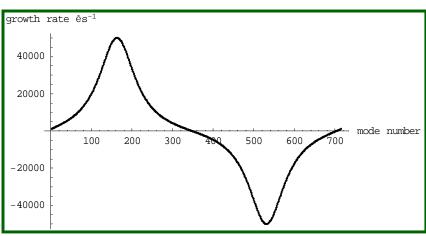
- Expect around 4 minutes with nominal parameters
 - An issue for commissioning and tuning
 - Potential heat load by particle loss (expect only ~ 10 W from this mechanism)
- Lifetime can be improved by:
 - improving momentum acceptance
 - coupling the beam



Phase Transients

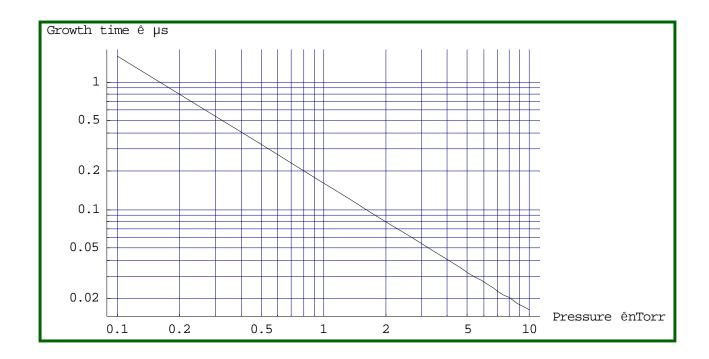
- Beam loading in RF cavities gives phase shift along the train
 - studied by tracking (Stefano de Santis; simulation code from John Byrd)
- Tolerances set by bunch compressors
- Effects from main cavities are not too severe
 - linear phase variation along the train





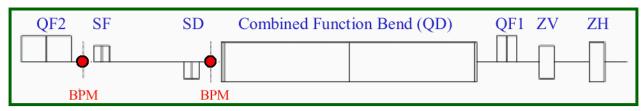
Electron Cloud

- Significant discussion at LC02, and ECLOUD02
- Studies for NLC by Sam Heifets, Mauro Pivi and Miguel Furman
- Single-bunch and coupled-bunch effects
- Still significant uncertainties
 - cloud density, distribution and dynamics
 - instability modes and models
- Simple analysis suggests NLC MDR:
 - is above (or at least close to) strong head-tail threshold
 - could experience coupled bunch growth times $\sim 20 \mu s$



Fast Ion Instability

- Ions generated from residual gas interact with bunches further down the bunch train
- Oscillations can grow from Schottky noise
- Rise times can be fast, though growth strictly not exponential
- Some observations (ALS, PLS) though further verification is important

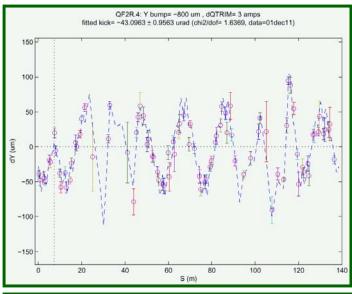


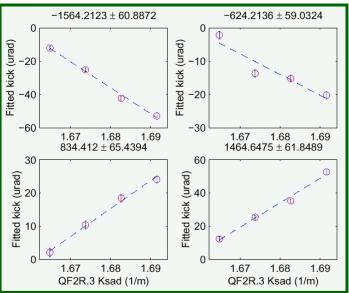
ATF

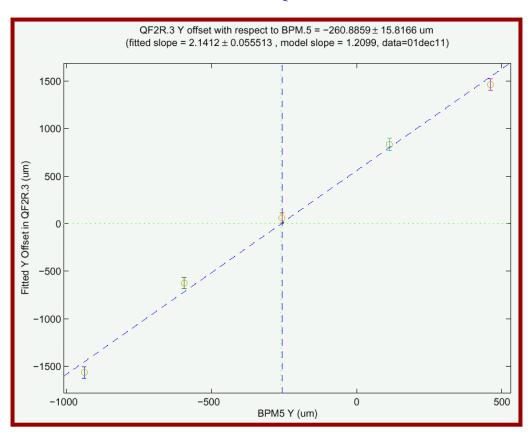
- Focus of recent work at the ATF has been on low emittance
 - achieving low emittance (alignment)
 - measuring low emittance (instrumentation)
- Beam-Based Alignment
 - Marc Ross, Mark Woodley, Janice Nelson
 - aim to measure BPM-quad offset to 20 μm
 - hope to reduce vertical emittance below 10 pm (20 pm achieved)

- use method of quadrupole variation
 - make a closed bump through target BPM-quadrupole
 - determine kick from quadrupole by fitting difference orbit resulting from trim; for a given bump, gradient of kick vs trim gives offset
 - plot offset vs BPM reading for different bumps, to determine BPM-quad offset

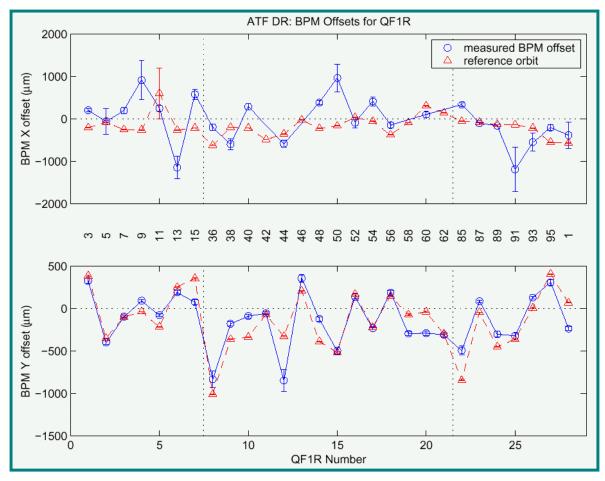
BBA Challenges




- Intensity dependence
 - affects BPM reading
 - affects BPM resolution
 - 20 μ m at 10¹⁰ per bunch, 40 μ m at 0.5×10¹⁰ per bunch
 - average over 20 orbits
 - monitor intensity stability
- BPMs affected by beam losses
 - limits ranges for bumps and trims
 - monitor intensity stability
- Energy dependence
 - dispersion (mostly horizontal) at BPMs
 - include energy error in orbit fits
- Time limitation
 - acquire orbits at 3 Hz machine rate
 - 20 orbits for 25 settings for 100 BPMs for 2 planes (10 hours)
 - automated data taking

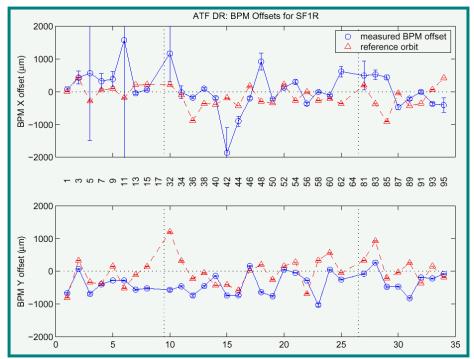

BBA at ATF

Example: BPM5Y reads -261 μm when beam has zero offset in QF2R.3

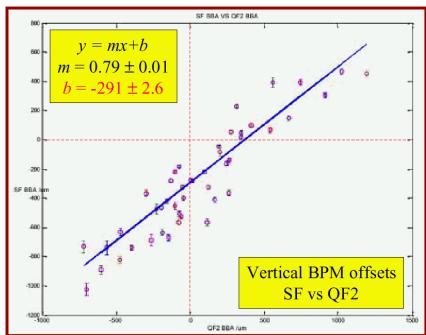


Note: We believe offsets are principally electronic in origin

BBA Quadrupole Results



Low emittance tuning has found an orbit that minimizes vertical offset in the quadrupoles!



BBA Sextupole Results

- Low emittance reference orbit follows sextupole offsets to some extent.
- Note 300 µm systematic offset between quadrupoles and sextupoles.

ATF Recent Work

- Further BBA studies were performed in early March
 - Results for arc quadrupoles were reproducible
 - Turning off correctors steered beam through the quadrupole centers
 - ATF alignment is extremely good
 - Sextupole results were not as well reproducible
 - weak signal; hysteresis...
- Tests with skew correction using OTR and wire scanners
 - Even small errors in wire scanner measurements make it difficult in practice to determine vertical emittance and coupling
 - Data from OTR is extremely useful
 - It is currently believed that an imaging monitor of some kind will be required in the Damping Rings for effective tuning
 - There is now an active collaboration with DESY (TTF), to find the best OTR target material

Continuing BBA Work

- Complete measurements for all BPMs
 - include BPMs in the straights
 - iteration may improve results
- Use BBA data in constructing new reference orbit for low emittance tuning
- Understand origins of poor orbit fits
- Verify stability by repeating measurements
- Understand systematic offsets in quadrupole-sextupole alignment
 - systematics possibly introduced by differential pole saturation
- New BPM system
 - 2 μm resolution, scheduled for installation in November

Damping Rings R&D Program

- LC luminosity crucially dependent on Damping Rings performance
 - need to minimize uncertainties as much as possible
- High priority issues:
 - Achieving Low Emittance
 - Routine operation with very low vertical emittance still needs to be demonstrated
 - Continue work on BBA at ATF
 - Make use of other machines, e.g. SLS, SPRING8...
 - Some challenges for instrumentation/measurement
 - Fast Ion Instability
 - Verify theoretical predictions (e.g. by further work on ALS)
 - Develop simulation codes
 - Electron Cloud
 - Development of models and codes, to be able to make accurate predictions of cloud build-up and effects on the beam
 - Find the best way to prevent the cloud build-up (TiN...)
 - Intra-Beam Scattering
 - Need to fully understand ATF data and verify theory
 - Develop strategies to overcome limitation on the Damping Rings

Damping Rings R&D Program

• Other issues:

- Nonlinear Dynamics
 - Improve dynamic aperture/momentum acceptance
 - Wiggler models
- Beam-Radiation Interaction
 - Damping Ring wigglers provide an extreme regime
- Injection Transients
 - Coupling between injected and stored trains (e.g. through wake fields or feedback system)
- Damping Time
 - Injection phase space mismatch from nonlinear distortion
- Instrumentation
 - Especially for measuring low emittance beams
- Kicker Compensation
- Polarization